An examination of the electrostatic interactions between the N-terminal tail of the Brome Mosaic Virus coat protein and encapsidated RNAs.

نویسندگان

  • Peng Ni
  • Zhao Wang
  • Xiang Ma
  • Nayaran Chandra Das
  • Paul Sokol
  • Wah Chiu
  • Bogdan Dragnea
  • Michael Hagan
  • C Cheng Kao
چکیده

The coat protein of positive-stranded RNA viruses often contains a positively charged tail that extends toward the center of the capsid and interacts with the viral genome. Electrostatic interaction between the tail and the RNA has been postulated as a major force in virus assembly and stabilization. The goal of this work is to examine the correlation between electrostatic interaction and amount of RNA packaged in the tripartite Brome Mosaic Virus (BMV). Nanoindentation experiment using atomic force microscopy showed that the stiffness of BMV virions with different RNAs varied by a range that is 10-fold higher than that would be predicted by electrostatics. BMV mutants with decreased positive charges encapsidated lower amounts of RNA while mutants with increased positive charges packaged additional RNAs up to ∼900 nt. However, the extra RNAs included truncated BMV RNAs, an additional copy of RNA4, potential cellular RNAs, or a combination of the three, indicating that change in the charge of the capsid could result in several different outcomes in RNA encapsidation. In addition, mutant with specific arginines changed to lysines in the capsid also exhibited defects in the specific encapsidation of BMV RNA4. The experimental results indicate that electrostatics is a major component in RNA encapsidation but was unable to account for all of the observed effects on RNA encapsidation. Thermodynamic modeling incorporating the electrostatics was able to predict the approximate length of the RNA to be encapsidated for the majority of mutant virions, but not for a mutant with extreme clustered positive charges. Cryo-electron microscopy of virions that encapsidated an additional copy of RNA4 revealed that, despite the increase in RNA encapsidated, the capsid structure was minimally changed. These results experimentally demonstrated the impact of electrostatics and additional restraints in the encapsidation of BMV RNAs, which could be applicable to other viruses.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on Genetic Diversity of Terminal Fragment Sequence of Isolated Persian Tobacco Mosaic Virus

Tobacco mosaic virus (TMV) is one of the devastating plant viruses in the world that infects more than 200 plant species. Movement protein plays a supportive role in the movement of other plant viruses, and viral coat protein is highly expressed in infected plants and affects replication and movements of TMV. In order to investigate genetic variation in the terminal fragment sequence in Iranian...

متن کامل

Effects of amino-acid substitutions in the Brome mosaic virus capsid protein on RNA encapsidation.

Brome mosaic virus (BMV) packages its genomic RNAs (RNA1, RNA2, and RNA3) and subgenomic RNA4 into three different particles. However, since the RNAs in the virions have distinct lengths and electrostatic charges, we hypothesize that subsets of the virions should have distinct properties. A glutamine to cysteine substitution at position 120 of the capsid protein (CP) was found to result in a mu...

متن کامل

Efficient production of human gamma interferon in tobacco protoplasts by genetically engineered brome mosaic virus RNAs.

We succeeded in producing human gamma interferon (IFN-gamma) in tobacco protoplasts in quantity using genetically engineered brome mosaic virus (BMV strain ATCC66). This strain of BMV produces two types of coat protein, a full-length coat protein (20K) and a truncated coat protein (19K) which are translated from the first and second initiation codons, respectively. We replaced the truncated coa...

متن کامل

The intrinsically disordered N-terminal arm of the brome mosaic virus coat protein specifically recognizes the RNA motif that directs the initiation of viral RNA replication

In the brome mosaic virus (BMV) virion, the coat protein (CP) selectively contacts the RNA motifs that regulate translation and RNA replication (Hoover et al., 2016. J. Virol. 90, 7748). We hypothesize that the unstructured N-terminal arm (NTA) of the BMV CP can specifically recognize RNA motifs. Using ion mobility spectrometry-mass spectrometry, we demonstrate that peptides containing the NTA ...

متن کامل

The coat protein leads the way: an update on basic and applied studies with the Brome mosaic virus coat protein.

The Brome mosaic virus (BMV) coat protein (CP) accompanies the three BMV genomic RNAs and the subgenomic RNA into and out of cells in an infection cycle. In addition to serving as a protective shell for all of the BMV RNAs, CP plays regulatory roles during the infection process that are mediated through specific binding of RNA elements in the BMV genome. One regulatory RNA element is the B box ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 419 5  شماره 

صفحات  -

تاریخ انتشار 2012